Chapter 6.2 part 1

Ideals in a ring R - subrings with absorbtion property.
Th 6.10 The kernel of a ring homomorphiscu is an ideal
Th 6.2 Let R be a commentative ring with identity, and $c \in R$.
$(c)=|c r| r \in R Y$ is an ideal \quad Terminology: principal ideal
notation for the principal ideal generated by $c \in R$
Question Is any ideal the kernel of a ring homomorphism?
R - a ring, $R \supseteq I$ - an ideal in R.
Is there a ring S and a ring homomorphism $R \rightarrow S$ such that the kernel is I?

Examples $\quad \nabla \supset(n)=\{n a \mid a \in \mathbb{Z}\} \quad n \neq 0, \pm 1$
We constructed (Chapter 2) the ring $\nabla_{L_{n}}$, and it is easy to check that
the leap $\mathbb{Z} \longrightarrow \mathbb{Z}_{n}$ is a homomorphism of rings

$$
a \longmapsto[a]
$$

The kerned is $\left.h a \in \nabla_{L} \mid[a]=[0]\right\}=\left\{a \in Z_{L} \mid a \equiv 0(\bmod u)\right\}=\{n b \mid b \in Z Z=(n)$
We constructed (Chapter 5) the ring $F[x] /(p)\left\{\begin{array}{l}F-\text { a field } \\ p \in F[x]-n\end{array}\right.$ $p \in F[x]$ - non- constant

It is easy to cheek that
the leap $F[x] \rightarrow F[x] /(p)$ is a homotuorphisue of rings

$$
f \longmapsto[f]
$$

The kernel is $(p)=\{g p \mid g \in F[x]\} \subset F[x]$
principal ideal in $F[x]$ generated by $p \in F[x]$
Strategy to attack the question
We start with a ring R and an ideal $I \subseteq R \quad \begin{cases}\text { as } & (n) \subset \nabla_{L} \\ & (p) \subset F[x]\end{cases}$
Define congruence modulo the ideal such that this is an equivalence relation on R. Let R / I to be the set of equivalence classes. Make R/I a ring by introducing the operations of addition and multiplication in a way such that
the map $R \longrightarrow R / I$ is a ring homomorphism
$a \longmapsto$ the equivalence class which contains a
The kernel automatically is I - the class norwich contains O_{R}

Outline of an implementation of this strategy (mostly Section 6.2)
Congruence
$\left.\nabla_{L} \partial(n)=h c n \mid c \in \nabla_{L}\right\} \quad a \equiv b(\bmod n)$ meaning $h \mid(a-b)$ meaning $a-b \in(n)$
$F[x] \supset(p)=\{c p \mid C \in F[x]\} \quad f \equiv g(\bmod p)$ meaning $p \backslash(f-g)$ meaning $f-g \in(p)$
Def R-airing, $I \subseteq R$ is an ideal in R
For $a, b \in R$ we say $a \equiv b(\bmod I)$ iff $a-b \in I$
Th 6. 4 The relation \equiv on R is an equivalence relation
Notation R / I is the set of equivalence classes ξ similar to $F[x] /(p)$
Teverinology equivalence class is called coset $\}$ congruence classes
Notation A coset is typically written as

$$
a+I \text {-absolutely standard } \xi[a]
$$

I - the ideal
$a \in R$ - a representative (an element of the coset/equivalence class)

$$
a+I=4 a+i \mid i \in I\} \in R / I
$$

$$
(a+i)-(a+j)=i-j \in I
$$

since $i, j \in I$

Operations

$$
\left\lvert\, \begin{aligned}
& (a+I)+(b+I)=(a+b)+I \\
& (a+I)(b+I)=a b+I
\end{aligned}\right.
$$

$$
\left\{\begin{array}{l}
{[a]+[b]=[a+b]} \\
{[a][b]=[a b]}
\end{array}\right.
$$

Th 6.8 These operations are well-defined
The proof is based on Th6.5 which states essentially the some
To summarize:
Th 6.9 Let I be an ideal in a ring R. Then
(i) R / I with the operations defined above is a ring
(2) If R is commutative, then so is R / I
(3) If R has an identity $\left.\right|_{R} \in R$, then so does $R / I \Rightarrow l_{R}+I$

The desired homomorphism
Th G. 12 Let I be an ideal in a ring R. Then the map

$$
\pi: R \longrightarrow R / I \quad \text { is a surjective }
$$

$$
r \longmapsto r+I
$$ of rings

Terminology R/I - quation ring (factor ring)
Clearly, the kernel of J_{T} is the class of O_{R}, namely the coset $O_{R}+I$

$$
\left.O_{R}+I=h O_{R}+i \mid i \in I\right\}=\{i \mid i \in I\}=I
$$

A combination of Th G.10 and Th b.12 can be stated as follows:

